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Normal Inverse Gaussian Distributions and 
Stochastic Volatility Modelling 

OLE E. BARNDORFF-NIELSEN 

Aarhus University 

ABSTRACT. The normal inverse Gaussian distribution is defined as a variance-mean mixture of 
a normal distribution with the inverse Gaussian as the mixing distribution. The distribution 
determines an homogeneous Levy process, and this process is representable through subordination 
of Brownian motion by the inverse Gaussian process. The canonical, Levy type, decomposition of 
the process is determined. As a preparation for developments in the latter part of the paper the 
connection of the normal inverse Gaussian distribution to the classes of generalized hyperbolic 
and inverse Gaussian distributions is briefly reviewed. Then a discussion is begun of the potential 
of the normal inverse Gaussian distribution and Levy process for modelling and analysing 
statistical data, with particular reference to extensive sets of observations from turbulence and 
from finance. These areas of application imply a need for extending the inverse Gaussian Levy 
process so as to accommodate certain, frequently observed, temporal dependence structures. 
Some extensions, of the stochastic volatility type, are constructed via an observation-driven 
approach to state space modelling. At the end of the paper generalizations to multivariate settings 
are indicated. 

Key words: conditional heteroscedasticity, finance, generalized hyperbolic distributions, gen- 
eralized inverse Gaussian distributions, Levy process, observation-driven, state space model- 
ling, subordination, turbulence 

1. Introduction 

A normal variance-mean mixture distribution, here termed the normal inverse Gaussian 
distribution, is used to construct stochastic processes that appear of interest for statistical 
modelling purposes, particularly in turbulence and finance. 

In section 2 we give the definition and some properties of the univariate normal inverse 
Gaussian distributions. These distributions generate homogeneous Levy processes, which 
are considered in some detail in section 3. In particular, an alternative representation of 
the processes via random time change of Brownian motion, using the inverse Gaussian 
process to determine time, is pointed out and the canonical decomposition of the Levy 
measures and of the processes themselves are determined explicitly. Section 4 describes 
the connection of the normal inverse Gaussian distributions to the generalized inverse 
Gaussian and hyperbolic distributions, in preparation for the later part of the paper. 
Section 5 discusses the potential applicability of the normal inverse Gaussian distributions 
and Levy processes for the modelling and analysis of statistical data, particularly from 
turbulence and finance. The need to model certain types of dependence structures, typically 
observed in those areas, is described, and this forms part of the motivation for the 
discussion in the remaining two sections. In section 6 an observation-driven approach 
to state space modelling is briefly discussed and is then specialized to a rather flexible 
class of stochastic volatility and conditional heteroscedasticity models, exemplified using 
the normal inverse Gaussian distribution. Extensions to multivariate models and processes 
are indicated in the final section 7. At several points the constructions draw on the 
representation of the normal inverse Gaussian distribution as a normal variance-mean 
mixture. 
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2 0. E. Barndorff-Nielsen Scand J Statist 24 

2. The normal inverse Gaussian distribution 

We define the normal inverse Gaussian distribution as the distribution on the whole real line 

having density function 

g(x; oc, /3, i, () = a(a, /, , )q( ')K b {q ((X exp OX(f) (2.1) 

where 

a(a, /3, 1,6) = v-'Io exp ((5/( 2 -32) - /i) (2.2) 

and 

q(x) =+X2 (2.3) 

and where K1 is the modified Bessel function of third order and index 1. Furthermore, a, /3, 

p and 6 are parameters, satisfying 0 <, |B I < a, p E R and 0 < (. The distribution is symmetric 

around It provided 3 = 0. We shall denote this distribution by NIG(a, /3, P1, 5). The parame- 

ters a = boa and f= 6/3 are invariant under location-scale changes of x, and expressed in 

terms of these the density of the normal inverse Gaussian distribution becomes 

g(x; a, if, ,u, () = (7(b) - exp ( V/(i2 _ if2) - ,Iu/)q (x _ 

x K1{ q exp (ifxl)). (2.4) 

Let IG((, y) denote the inverse Gaussian distribution with density function 

d(z; (, y) = (2x) -1/2( exp (y)z -3/2 exp {-_(52Z -1 + 72z)} (2.5) 

The mean and variance of IG(b, y) are Ez = (/v and Vz = a/73. 

The NIG(a, /3, /u, () distribution is a normal variance-mean mixture (Barndorff-Nielsen 

1977, 1978). In fact, it occurs as the marginal distribution of x for a pair of random variables 

(z, x) where z follows the IG((, J,/(X2 -_ 2)) distribution while conditional on z the distribu- 

tion of x is normal with mean ,u + /3z and variance z. This is the reason why we refer to the 

distribution (2.1) as the normal inverse Gaussian distribution. 

For fixed values of a, 11 and ( the class of normal inverse Gaussian distributions constitutes 

an exponential model with /3 as canonical parameter and x as canonical statistic. The 

moment generating function M(u; a, /3, i, () of NIG(a, /3, It, () is therefore immediately 

expressible in terms of the norming constant (2.2) and we find 

M(u; a , /l, it, () = exp [(5{J(O(e2 - /2) - V(a2 - (/ + U)2)} + iU] (2.6) 

Thus all moments of NIG(a, /, pi, () have simple explicit expressions and, in particular, the 

mean and variance are 

K1 = Ex = u + (i/(l -72)12 (2.7) 

and 

K2 = VX = ( 2/ - _ 2)3/2} (2.8) 

where fr = if/d = /3/a. 

It follows, moreover, immediately from (2.6) that the normal inverse Gaussian distribu- 

tions are infinitely divisible and that if xl, . . ., xm are independent normal inverse Gaussian 
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Scand J Statist 24 Normal inverse Gaussian distributions 3 

random variables with common parameters a and / but having individual location-scale 
parameters pi and bi(i = 1, . . ., m) then x+ = xl +..- + x,,, is again distributed according to 
a normal inverse Gaussian law, with parameters (a, /3, yu+, bj). 

We also note that the normal distribution N(,u, a2) appears as a limiting case for ,B =0, 

a -+ oo and 6/ac = 
U2, that the Cauchy distribution is the special case NIG(0, 0, 1, 0) and that, 

using the well-known asymptotic formula for the Bessel function K1 

K5 (s) -/(7r/2)s-112 exp (-s) as s -+ oo, (2.9) 

we have that 

/x_ y -3/2 
ep(.0 g(x; Y, 3,B, u, 6) A(a, /3, i, 6)q 6 ,) exp [-pV{62 + (x - ,)2} + Ax] (2.10) 

for a > 0 and IxI -+ oo or, more generally, for cV{6 2 + (x _ ti)2} _+ 0o. In (2.10) the norming 
constant A is given by 

A(a, /3, i, 6) = (2xK)- 12(t/ 6)112 exp (6V( 2 - /32) - /3). (2.11) 

3. Normal inverse Gaussian processes of Levy type 

We define the normal inverse Gaussian Levy process as the homogeneous Levy process (i.e. 
Levy process with stationary increments) {x, } for which the moment generating function of 
xt is 

Mt(u; a,/3, u, 6) =E{exp (uxt)} =M(o, /3, i, 6)' (3.1) 

where M(ac, /3, u, 6) is given by (2.6). The moment generating function Mt of xt is thus 
expressible as 

Mt(u; a, 3, /i, 6) = M(u; X, /3, tu, t6). (3.2) 

3.1. Representation by subordination 

As a direct consequence of the mixture representation of the normal inverse Gaussian 
distribution we find that the normal inverse Gaussian Levy process xt may be represented, 
via random time change of a Brownian motion, as 

t= + 4ut (3.3) 

where {bt } is the Brownian motion with drift ,B and diffusion coefficient 1 and where {zt }, 
stochastically independent of {bt }, is the inverse Gaussian Levy process with parameters 6 
and ,/(a2 _- 2). The latter process is defined as the homogeneous Levy process {zt } for 
which the density of z, is given by (2.5). The variate zt has the interpretation of being the first 
passage time to level 6t of a Brownian motion with drift ,/(a2 _ /32) and diffusion coefficient 
1. In a different wording, (3.3) represents the normal inverse Gaussian Levy process as a 
subordination of Brownian motion by the inverse Gaussian Levy process. 

On the other hand, the Levy decomposition analysis given in the next subsection shows 
that the process can also be viewed, essentially, as a superposition of weighted independent 
Poisson processes, weights of all sizes occurring but those numerically small dominating the 
picture. 
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4 0. E. Barndorff-Nielsen Scand J Statist 24 

3.2. Levy measure and Levy decomposition 

We proceed to determine the decomposition of the normal inverse Gaussian Levy process 
according to the theory of homogeneous Levy processes. 

For the derivation it is inessential what the value of p is, and we therefore assume that 
= 0. Furthermore, for brevity we shall sometimes write / for c.2 _ f2. 

As above we denote the inverse Gaussian Levy process by {z, }. Let 

K, (v) = log E{exp (-vz,)}. (3.4) 

Then, by (2.5), 

K, (v) = tM {j/o - /( + 2v)}* (3.5) 

The characteristic function of x,, the value of the normal inverse Gaussian Levy process 
at time t, may be written as 

P, (T) = exp {K, ( - 
r 2- i#T)} (3.6) 

with K, given by (3.5). On the other hand, in view of (2.6), 

(Pt(T) = exp [t{V(22 - f2) - /(a - (/ + iT)2)}] (37) 

Let K(V) = Kl (v) and p(T) = PI (T). From Halgreen (1979) we have 

K(V) = _32 f w(262(y - */2))-1 log (1 + v/y) dy (3.8) 
.*12 

where the function w is given by 

w(x) = (ir2/2)x{J'2 (/x) + Y2 /2(J/x)}. (3.9) 

Inserting the well-known expressions for the Bessel functions entering (3.9) 

JI12(X) = \/(2/b)x-1/2 sin x Y112(x) = -v/(2/7r)x- 12 cos x, 

we obtain 

w(x) = 7r,/x. (3.10) 

It was furthermore shown in Halgreen (1979) that 

-log(I +T2/2-iflz) = xP(< - xi exp(-V(2+ #2)IxI+/3x)dx. (3.11) 

Combining (3.6), (3.8) and (3.11) we find that the Levy-Khintchine formula for p is 

log P(T) = iTx + <1 (exp (iTx) - 1 - iTx)f(x; a, /3, 3) dx 
IxI < I 

+ (exp (iTx) - 1)f(x; a, /, 6) dx (3.12) 

where 

x = 27x ̀ 6f sinh (fix)KI (ax) dx (3.13) 
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Scand J Statist 24 Normal inverse Gaussian distributions 5 

and where the Levy density f(x; cx, /, 6) is given by 

f(x; as,,6) = (irV/2)1x'l exp (,Bx) f y-1/2 exp (-|x|K/(2y +a2)) dy 

- /2V26IxI exp (fx) { exp(-IxIV2V(cx2I2 + 2))ds (3.14) 

or, equivalently, 

f(x; ac, 3, 6) = ir5c5cxIxI exp (/3x)Ki (cIxI). (3.15) 

(The integral representation for the Bessel function K1, used in deriving (3.14) and (3.15), is 
implicit in (4.1) for the density of the hyperbolic distribution given below.) 

Equations (3.14) and (3.15) show that the normal inverse Gaussian Levy process is 
representable in the form 

X~ = tX+FJ y{nt(dy) -tv(dy)}+F| yn,(dy) (3.16) 
LI<1 .)vi1> 

where 

v(dy) =f(y; ax, /3, 6) dy; (3.17) 

furthermore, for any set A1 such that 0 ? A we have that nA = fA n, (dy) is a Poisson process 
with parameter v(A), and nX and ntZ are independent if A and are disjoint (cf. Protter, 1992, 
p. 32). 

For y 40 we have K,(y) - y- and hence 

f(y; cP,/3) = , -.'Ivyx2 as y 0. (3.18) 

The small jumps are therefore dominating the behaviour of the process xa , and x, 
has infinite variation on any finite time interval, cf. Gikhman & Skorohod (1975; th. 8, p. 
279). 

4. Connection to generalized hyperbolic and inverse Gaussian distributions 

The density (2.1) determines, in fact, one of the generalized hyperbolic distributions 
(Barndorff-Nielsen, 1977), the hyperbolic distribution itself, whose density is 

h(x; a, /,B , 6 ,) = v(d2 - 312)/{26aK1 <(cx2 - /2))} 

x exp [- ~{62 + (x _ )2} +/3(X-u)], (4.1) 

being another special case. In (4.1), ha and / have to be restricted by 0 a 1P/1 < a. 
Each of the generalized hyperbolic distributions are characterized by four parameters, x, ,2, 

o and 6. Of these, K and 6 are location and scale parameters, and the alternative parameters 
Th= e and ju=6/3 are invariant under location-scale changes. 
The generalized hyperbolic distributions are all representable as normal variance-mean 

mixtures with generalized inverse Gaussian distributions as mixing distributions (Barndorff- 
Nielsen, 1977, 1978; see also Barndorff-Nielsen et al., 1982). We shall denote the generalized 
inverse Gaussian distribution by GIG(R, 6, '4 It has density function 

(y /6)a{2KA (6y) }1I Z A l exp {-o ( 2Z-I + yX2Z) } (4.2) 
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6 0. E. Barndorff-Nielsen Scand J Statist 24 

If z follows the GIG(A, 6, >/(2 - ,B2)) distribution and if x given z is N(y + Pz, z) 
distributed, then unconditionally x has the generalized hyperbolic distribution H(A, a, ,B, ,u, 6) 
with density 

a(,x, a/, )q, 
x 

K-12 (aq( 6 i)) exp(fx) (4.3) 

where q is defined by (2.3) and 

a(A, a, /, it, 6)- (2x)-1/26 -"12a- A+12(a2_f2) /12KA(6J(a2 _ 2)) 1 exp(-fly). (4.4) 

The normal inverse Gaussian distribution and the hyperbolic distribution correspond to 
the values A = -2 and A = 1, respectively. Other cases of special interest are A = 0 (hyper- 
boloid distribution) and A = 2. A computer program for maximum likelihood estimation 
based on i.i.d. observations from any of these special distributions, as well as for certain two- 
and three-dimensional generalizations, has been developed by Blxsild & S0rensen (1992, 
1996). 

For later reference we note that the conditional distribution of the mixing variable z given 
x is generalized inverse Gaussian: 

z Ix GIG(A_ I26q( kt)y ,) (4.5) 
( 2 ( 

Note, in particular, that this conditional distribution does not depend on /3. 

5. Comparison to hyperbolic modelling 

Statistical modelling by means of the hyperbolic distribution has been effective in a number 
of contexts, see for instance Barndorff-Nielsen (1977, 1986), Blesild (1981), Barndorff- 
Nielsen & Blesild (1983), Barndorff-Nielsen et al. (1985), Barndorff-Nielsen & Christiansen 
(1988) and further references given below. 

The normal inverse Gaussian distribution can approximate most hyperbolic distributions 
very closely but can also describe observations with considerably heavier tail behaviour than 
the log linear rate of decrease that characterizes the hyperbolic shape. Since, in addition, the 
normal inverse Gaussian distribution has more tractable probabilistic properties than the 
hyperbolic it seems potentially of substantial usefulness. In the rest of this section and part 
of the following we consider this point further, in two particular contexts: turbulence and 
finance. 

5. 1. Turbulence 

The study of velocity differences in moderate and high Reynolds number turbulent wind 
fields is of central importance in turbulence, both theoretically and practically. Numerous 
and extensive observational investigations have shown that the velocity differences typically 
follow distributions that are close to symmetric and have tails that are either nearly log linear 
or somewhat heavier than log linear, cf. for instance van Atta & Park (1972), Wyngaard & 
Tennekes (1970) and Wyngaard & Pao-(1972). The log linearity has motivated a number of 
studies (Barndorff-Nielsen, 1979, 1986; Bamdorff-Nielsen et al., 1989, 1990, 1993) relating to 
questions in turbulence and evolving from the hyperbolic distribution. 

However, the normal inverse Gaussian distribution seems to offer an attractive alternative 
starting point for parametric modelling in turbulence because-of its special probabilistic 
properties and its ability to describe the typical tail behaviour of the velocity differences. 

? Board of the Foundation of the Scandinavian Journal of Statistics 1997. 

This content downloaded from 134.153.184.170 on Mon, 11 Nov 2013 22:24:27 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp
Simon Mauffrey
Texte surligné 



Scand J Statist 24 Normal inverse Gaussian distributions 7 

This possibility will not be pursued specifically here. Instead we turn to the modelling of 
returns from financial assets such as stocks or currencies. 

5.2. Finance 

Recent investigations, by Eberlein & Keller (1995) and Kuchler et al. (1994), have demon- 
strated that the hyperbolic distribution provides a very good fit to the distributions of daily 
returns, measured on the log scale, of single stocks or portfolios of stocks from a number of 
leading German enterprises. The time series of daily returns concerned do not exhibit 
significant autocorrelations, nor do the derived series of squared returns. It is therefore 
natural to try to model the logarithmic stock price processes as Levy processes, and Eberlein 
& Keller (1995) introduce and study what they term the hyperbolic Levy process for this 
purpose, using the fact that the hyperbolic distribution is infinitely divisible. 

In a preliminary version of the present report (Barndorff-Nielsen, 1995) it was demon- 
strated graphically that the normal inverse Gaussian distribution can approximate most 
hyperbolic distributions extremely closely, including those found by Eberlein & Keller 
(1995). Later work by Blxsild (1995) and Rydberg (1996) has shown that the normal inverse 
Gaussian distribution provides an even better description of the German data than the 
hyperbolic, and that the data point to the normal inverse Gaussian distribution as being the 
most appropriate within the class of generalized hyperbolic distributions. In addition, the 
normal inverse Gaussian Levy process is, as already discussed, mathematically simpler than 
the hyperbolic Levy process. 

It is, moreover, rather typical that asset returns exhibit tail behaviour that is somewhat 
heavier than log linear, and this further strengthens the case for the normal inverse Gaussian 
in the financial context. 

6. Conditional heteroscedasticity and stochastic volatility modelling 

The models for daily German stock returns discussed in the previous section were i.i.d. 
hyperbolic and i.i.d. normal inverse Gaussian. However, logarithmic stock returns and other 
types of financial time series often exhibit a significant dependence structure, cf. for instance, 
Shephard (1995). This dependence structure is of a nature generally referred to by the terms 
"stochastic volatility and conditional heteroscedasticity". Remarkably, a similar type of 
dependence is a characteristic feature in turbulence studies where it is referred to as 
"intermittency". 

At the end of the present section we shall define extensions of the normal inverse Gaussian 
i.i.d. model to time series with dependencies of the type in question. 

Prior to this we discuss an observation-driven approach to state space modelling, in 
discrete time. (We use the term "observation-driven" in the sense introduced by Cox, 1981.) 
This will then be specialized to the financial setting. For an overview of related work on state 
space modelling in finance see Shephard (1995). 

6.1. Observation -driven state space modelling 

For brevity we consider only the simplest possible case. 
Let YO' ZI, YI' Z2, Y2, ... be a Markov chain of continuous type random variates. We 

consider Zi, i = 1, 2, ..., to be a sequence of unknown states while yj, j = 0, 1, 2, . . ., are 
observable. The joint law of {zi } and {yj} is specified uniquely by prescribing the transition 
probability densities p(zi I yi- I ) and p(yi I zi), i = 1, 2, . . ., and the observable process {y1 } 
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8 0. E. Barndorff-Nielsen Scand J Statist 24 

constitutes a Markov chain whose transition probabilities are expressible in terms of the 
known densities p(zi I yi- -1) and p(yi I zi) by the relation 

P(I yi- ) = P(Y zj)p(zI y y-) dz. (6.1) 

In parametric statistical modelling p(yi yi -I) will depend on a parameter co, some 
components of which may come from p(zi yi- 1), others from p(y, I zi). In the particular 
cases to be discussed below, the integral in (6.1) can be explicitly calculated and hence an 
explicit expression for the likelihood function for w) based on data yfl(Yo,.. ., Yn) 

n 
L(c) =Hlp(yi;' Iy- I) (6.2) 

i= 1 

is available. Note also that we then have an explicit expression for the conditional density 

P(Z1,.* .* ZnI Yo, Yi * *, Y) of the states z, .. ., zn and, in particular, for P(Zn I Yo, 
Y, Yn), the latter being given by 

P(Zn I Yo, Yi, , Yn) =P(Zn I Yn- 1X Yn =P(Zn I Yn- I)P(Yn I Zn)/P(Yn I Yn -1) (6.3) 

Consider now the special case that p(yi I zi) is, for all i, the density of the normal 
distribution N(u + /3zi, zi), and let p(zi I yi- 1) be given by the generalized inverse Gaussian 
distribution 

Zi I yi- I - GIG(t, r(y1- 1; 1), 7) (6.4) 

where r( ; i) is some positive function, depending on a parameter q. The precise form of 
r( ; r) may be chosen based on theoretical and empirical knowledge. Then, by (6.1), 

Yi |Yi- I - H(A, a, fl, /1, r(yi- 1; q1)) (6.5) 

with a = y(JP2 + ? 2), cf. section 4. Note also that, writing ri for r(yi; ,), we have 

Zi |yn _ Zi I (Yi_ 1, y) - GIG(A - 1, I,{r 2_ 1 + (Yi-_ U)2}, at), (6.6) 

cf. (4.5) and (6.3). 
The relation between the dependence structure of {zi } and that of {yj} is of interest. 

Suppose for simplicity that p = , = 0. In view of (6.4) we have 

E(zi |zi- 1 ) = E{E(zi I zi- 1, yi- 1 ) I zi- I I = EJE(zi I yi- 1 ) I zi- I 

-lE{ ( 
K>KA (ar(y.-, 1;)) 

}(67 

If A =-, as we shall assume from now on, (6.7) reduces to 

E(zi I zi - 1 ) = a - 'E{r(ys_ -; 1) I zi - 1} (6.8) 

and in this case the conditional variance of zi given zi-l satisfies 

V(Zi I Zi_ 1) = cc -2[E(zi I zi- I1) + V{r(yi -1; t1) zi- 1}] (6.9) 

Further, since yi y yi- 1 - NIG(a, 0, 0, r(yi- 1; q)) we have 

E(yi2 I yi-1) =E(yi2 IYy2_ 1) =c 
- 
1r(yi -1; 1) (6.10) 

cf. (2.8). A plot of y2 against yi- i = 1, 2, . . ., can thus indicate an appropriate formula for 
r( ; n) 
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Scand J Statist 24 Normal inverse Gaussian distributions 9 

Suppose a functional form of r( ; i/) has been chosen. To determine the maximum 
likelihood estimates of the parameters a, 1B, it and t1, based on a sample yo, yl, . . y, y, it may 
be convenient, rather than seeking to maximize the likelihood function simultaneously in all 
the parameters, to proceed via determination of the profile likelihood for ?I using the previously 
mentioned computer program developed by Blisild & S0rensen (1996) to find the partial 
maximum likelihood estimates of a, ,B and ,u (which would involve treating the quantities 
yj/r(yj- 1; ii), j = 0, 1, . . ., n, as if they were normal inverse Gaussian i.i.d. with 6 = 1). 

A rather flexible choice of r( ; r) is, with i = (8, p, K), 

r(y; t) = (e + py2)K. (6.11) 

For K = 0 we recover the normal inverse Gaussian i.i.d. model and for general K > 0 the 
expression (6.8) for E(zi I zi- 1) can be approximately evaluated as 

E(zi Izi-) =o 1{s +27r1/2F(K +2)pZi_}K (6.12) 

where F denotes the gamma function. In fact, the formula is exact both for K = 0 and K = 1, 
interpolates smoothly between these two cases, and holds asymptotically for zi -+ 0 and 
z - I oo whatever the value of K. 

Thus, if for suitable choice of ?, p and K, determined for instance via the profile likelihood 
for q = (e, p, K), we have that the model fits the data yo . . , yn well then by (6.12) we have 
a direct handle on the regression structure of the {zi } process. 

In the language of financial modelling, the z!/2 are referred to as the stochastic volatilities. 
In that context it is often considered natural to suppose that the volatility process is "mean 
reverting" in the sense that if zi -1 is below the "typical" level of the process then the next 
value zi will tend to be larger than zi- 1, and conversely if zi- 1 is larger than the typical value. 
If 0 < K < 1 then (6.11) entails this kind of behaviour. 

In view of (6.6), an appealing choice is K = 2, in which case (6.11) and (6.6) (with A = 

take the form 

r(y; s, p) = (? + py 2)1/2 (6.13) 

respectively 

Zi I yn _ GIG(-1, V(g + py2_ I + y3),ca) (6.14) 

The conditional mean of zi, which may be used as a predictor of zi, is then 

K(x/s+ py31 + y3)) 
E(z, I yn) =0i K0(c + py 2 2 

- 
(6.15) 

K,Q (NE + py13 + y3)), 

Extensions of the above approach in order to model higher order dependence is rather 
straightforward. For instance, the law of the process yo, ZI, YI, Z2 .... . may be specified by 
saying that 

yiI (z,y') )-yi Izi - N(O,zi) (6.16) 

(where zi= (z1, . ., zi)) and that 

z Iyi-1 -IG((? + PlYiY_I + * * * + PkYi-k) K 
g) (6.17) 

for some positive integer k and letting, say, Y-k + 1 = = Yo = 0. The parameters ?, PI, . . , Pk 

and K are supposed to be non-negative. 
Noting that 

E(z | yi-1) = a-1(? + PlYi+ +PkYi-k) (6.18) 
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one sees that the present type of model has a certain analogy to ARCH models (cf. 
for instance, Shephard, 1995). However, in contrast to the latter, the conditional law 
of the volatility at time t given. the observations from the previous time points is here 
non-degenerate. 

Under the model given by (6.17) with K we have moreover 

Yiv I Y' l- NIG(a, 0, 0, (E + PlY2-_ +_* + Pky-k) 112) (6.19) 

so that, again, the likelihood function is explicitly available and the maximum likelihood 
estimation may be carried out in analogy with the special case k = 1 considered earlier. 
Furthermore, 

E(y2 I yi -1) = 1(+S + piY2I + PkYi-k)1 (6.20) 

and 

Zi I yn _ GIG(_-1, (8+ PlYi + + PkYi-k) 1 a). (6.21) 

6.2. Stochastic volatility models 

Typically, the autocorrelations of an observed series yj of financial asset returns are 
essentially 0 whereas the squared series yj2 have positive autocorrelations that decrease slowly 
to 0. An appealing way to model this is to specify yj as 

yj = a, (6.22) 

where {uj} and {ej } are independent processes with the uj being positive, generally depen- 
dent, random variables and the Ej being i.i.d. normal variates. In the mathematical finance 
terminology, the variables aj are called stochastic volatilities. For a recent review of 
stochastic volatility models of the type (6.22) see Shephard (1995). 

If the yj are observations of the normal inverse Gaussian processes discussed in subsection 
6.1 above and if , =/3=0 then the yj are of type (6.22), with zj in the role of ajU. 

7. Multivariate versions 

A multivariate extension of the generalized hyperbolic distributions, and in particular of the 
hyperbolic distribution itself and of the normal inverse Gaussian distribution, is simple to 
construct in view of the normal mixture representation, cf. Barndorff-Nielsen (1977). 
Suppose that x is a random vector which, conditional on a random variable z, follows the 
m-dimensional normal distribution with mean vector and variance matrix of the form 

+ z,B and zA, respectively; here, for identifiability of the parameters we assume that 

IA I = 1. Then, if again z is distributed according to the generalized inverse Gaussian 
distribution GIG(A, (, y) (cf. (4.2)) where 

y = /(cx2 - ##l'T) (7.1) 

we have as an m-dimensional generalization of (4.3-4) 

a(A, a, /3, u, (, A)QA '12KA - 12(&aQ) exp (/3xT) (7.2) 

where, with r= (A and q defined by (2.3), 

Q = q((x FuP) d-t (Xo _ ) T) Jn fai1 
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and 

a(A, ,,, 6, A) = (27f)-mI26 -(m+A)/2y Am/2-AKA(6y)-l exp (flyT). (7.4) 

We denote this distribution by Hm(A, a, /, It, 6, A). The class of multivariate generalized 
hyperbolic distributions is closed under conditioning, marginalization and affine transforma- 
tions. For discussions of these and other properties and applications of the distributions, see 
Blksild (1981) and Blxsild & Jensen (1981). 

Setting A = -2 in (7.2) we obtain what we shall term the mr-dimensional normal inverse 
Gaussian distribution NIGm(a, /3, p, 6;A), which has density 

g(x; a, ,, 6, A) = a(a, /3, p, 6, A)b(x; a, u, 6, A) exp (/3xT) (7.5) 

where 

a(ax, /, 6, A) = {(26)m -lxm + I 
Ia 1 -I1/2 (m + 1)/2 exp (6y) exp (f_ tT) (7.6) 

and 

b(x; o, j, 6, A) = q((x - u)Y-1(x - 1)T) -(m+ 1)/2K(m+ I)/2(6aq((x - i)Y (x - p)T)). (7.7) 

For m even, say m = 2k, the expression for b, and hence for g, has a more explicit form 
because in that case the Bessel function K(m + 1)/2 =Kk + /2 satisfies 

Kk + I/2 (s) = ./(7r/2)s -l/2 exp s) I + (2sk (k+i) (7.8) 

The joint distribution of z and x has been studied recently, from entirely different 
viewpoints, by Hassairi (1992, 1993) and Letac & Seshadri (1995). These authors refer to the 
distribution as "the inverse Gaussian distribution on Rm + "' 

From the exponential model form of (7.5) we have, by (7.6), that the cumulant generating 
function of the NIGm(a, /3, p, 6, A) distribution is 

K(u; a, /, 1i, 6, A) = -y 6-{a2 _ (/3 + u)A((# + U)T} 1/2 + ,IuT. (7.9) 

Consequently, if x - NIGm((a, /, u, 6, A) then the mean and variance of x are 

Ex = aI + (6/y)/A (7.10) 

VX = (6/y3)(y2A + 'AT/T/A3). (7.11) 

For ki = # = 0 these formulae reduce to Ex = 0 and 

Vx = (6/ a)A. (7.12) 

In particular, then the correlation matrix of x is the same as under the conditional 
distribution of x given z, a property of direct interest for financial modelling. 

The multivariate Levy process corresponding to the normal inverse Gaussian distribution 
(7.5) is obtainable, in extension of (3.3), by subordination of a multivariate Brownian 
motion relative to the inverse Gaussian Levy process {z, }, followed by an affine transforma- 
tion. Specifically, let {b, } denote Brownian motion with drift of the form /B, where B is an 
m x m matrix with BBT = A, and let {z, } be the inverse Gaussian homogeneous Levy process 
with z, - IG(t6, y). Then the mr-dimensional normal inverse Gaussian Levy process, for which 

X, -NIGm(a, /3, ji, 6, A), is representable as 

XI = bztBT + tu. (7.13) 

The state space and stochastic volatility models considered in section 6 may also be 
generalized to multivariate settings. 
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Suppose for instance that yO, Z1, YI, Z2, y. . i- 1, Zi,. .. is Markovian with 

zi |yi- I -IG(r(yi- 1; 1), ae), (7.14) 

and 

Yi zi - N(O, z1A); (7.15) 

here r( ; t), to be specified, is some positive function defined on Rm and depending on a 
parameter t, and A is a positive definite m x m matrix with lA I = 1. Then 

Yi I yi- I - NIGm(a, 0, 0, r(yi- 1; '1), A) (7.16) 

and hence, in particular, the likelihood function for (a, A, t/) is readily available. 
In analogy with (6.13) we may let 

r(y; i/) = r(y; e, R) = (v + yRyT) 1/2 (7.17) 

where R is a positive definite m x m matrix. In a financial context, the elements of R 
determine how the various stocks, expressed through the coordinates of yi- 1, singly and as 
pairs influence the volatility at the next observation time i. 

With the present choice of the function r we have 

zi I yn _GIG - I (?+,RyT I +yjA i ) 1/2, a). (7.18) 
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